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Abstract 

This work explored the use of routine battery maintenance data for the prediction of 
individual lead/acid cell performance as measured by capacity values. Pattern recognition 
techniques were used, and the importance of data-indexing and data-scaling methods for 
successful prediction was demonstrated. Data-scaling methods addressed the problem of 
combining or comparing data collected for different batches of cells or for different times. 
Various data-indexing methods were examined to determine which might capture best the 
maintenance data trends related to performance prediction. Consistently accurate classi- 
fication of high- and low-capacity cells verified the existence of information required for 
performance prediction in the maintenance database. 

Introduction 

The purpose of the project described here is to examine multivariate relationships 
among data obtained during maintenance and capacity testing of lead/acid cells used 
in deep-cycling energy-storage applications, and to evaluate correlations with cell 
performance. We want to determine if normal maintenance measurements can be 
used to predict performance of individual cells; to illustrate which maintenance 
measurements are most informative; and to gain insight to chemical/physical processes 
affecting performance and life of batteries. The basic approach involves the use of 
computerized pattern recognition techniques [l-5]. 

These techniques were evaluated previously [6] for lifetime prediction of individual 
sealed Ni/Cd cells based on multivariate analysis of manufacturer’s fabrication and 
initial test data. Later [7] it was shown that initial test data for individual lead/acid 
batteries could be correlated with observed lifetime using multivariate analysis (pattern 
recognition). 

The study described here is directed specifically at predicting performance of 
individual cells in large energy-storage batteries involving long strings of 100’s or 1000’s 
of cells. Unanticipated or undetected cell failures (or cell-reversals due to inadequate 
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capacity) can cause serious, sometimes catastrophic, damage to battery strings. Our 
work intends to demonstrate how routine battery maintenance data could provide the 
predictive ability for early indication of imminent cell failure in large battery installations. 

Description of the battery vstem 
This study has focused on maintenance and capacity data collected during operation 

of a 500 kWh lead/acid energy-storage system operated in a peak-shaving environment 
by Crescent Electric Membership Corporation (CEMC), Statesville, NC, since July, 
1987. The battery consists of 324 2080 Ah cells produced by GNB, Inc. These cells 
were produced in 1983, following specifications established by the Electric Power 
Research Institute (EPRI) [8]. The basic performance requirement was to deliver 
500 kWh, at 500 kW for 1 h. At this rate the cell-capacity limit was set at 1040 Ah. 
For a 5 h discharge at the 2080 Ah cell capacity, 1.2 MWh of stored energy could 
be delivered. The battery was provided with an g-year warranty. 

Fabrication materials and procedures were documented in detail by GNB and 
associated with individually numbered cells. Cells were produced and formed sequentially 
in four batches of 80 cells each, and a 5th batch of 20. These series-connected formation 
groups are referred to as circuits 1 to 5. Fifty-four 6-tell modules were installed at 
the Battery Energy Storage Test (BEST) Facility (operated by Public Service Electric 
and Gas Co. for EPRI), and acceptance tests were completed December 7, 1983. The 
battery underwent over 200 cycles of tests at the BEST Facility from 1983 to 1987. 

In July, 1987, the battery was transported to and installed at CEMC, where it 
has operated as a peak-shaving battery, to discharge at a maximum power of 500 kW 
for 1 h, or a minimum power of 200 kW for 3 h. Periodic maintenance data, cell 
impedance measurements, and cell failure observations have been added to the 
cumulative database. In addition, capacity test data for a carefully selected subset of 
109 to 121 of the 340 cells were obtained at CEMC in March, 1989, and April, 1990. 
Prior to October, 1990, only one cell had been bypassed, due to low capacity. In 
October, 1990, 44 cells, distributed among 11 modules, were observed to exhibit 
noticeable case swelling, but have not failed to satisfy capacity requirements. 

Statistical, pattern recognition, and cluster analysis studies have been applied to 
the cumulative database at each stage of the battery’s life: after initial fabrication and 
testing; after cycle testing at BEST, and after several years of operation at CEMC. 
Results of these studies have been published [9]. They show that variance in fabrication 
and formation parameters have a profound influence on initial and subsequently 
measured cell properties. Distinct cell subsets with common fabrication or formation 
conditions were observed to exhibit similar performance behavior, even into the battery’s 
mid-life period [9]. 

The work reported here examines maintenance data collected at CEMC in the 
light of previously-observed relationships between fabrication characteristics and cell 
subsets with common initial properties. The goal was to determine if subsequent cell 
performance could be predicted accurately from routine periodic maintenance data. 
But the earlier cluster analysis observations provided guidance regarding the grouping 
of cells for statistical and pattern recognition studies based on maintenance data. 

Pattern recognition techniques 
Pattern recognition involves the detection of regularities among sets of measurements 

describing objects or events. It includes analytical techniques for processing large 
amounts of data, the extraction of useful information to reduce the data, and the 
classification of the data. 



A pattern is defined as a d-dimensional vector composed of d independent 
measurements, and can be represented by: 

Pi’wixri+wzxa+wsxsi+ ... w&&+wd+i (1) 

where Xii, ~2, x3i.. . . . . xdi are variable components (measurements) of the pattern vector 
for the ith sample, and wl, wz, w3, . . . . . . wd+l are constant components (weight vector); 
d is the number of dimensions. 

Because the raw data vector may be of large dimension, some reduction of 
dimensionality is desired to obtain reliable classification. Thus, a reduced set of N 
features is extracted from the data which may include combinations and transformations 
of the raw data (where N<d). This reduced feature set should be defined to best 
characterize the distinguishing properties of each class to which sample i might belong. 
Numerous systematic techniques have been applied to this task of feature selection, 
including correlation analysis, statistical distribution analysis, and empirical methods 
such as sequential iterative feature elimination [l-5, 10, 111. 

Pattern classification was done in this work by applying the K-Nearest Neighbor 
(KNN) classification rule. That is, the class of an unknown item is determined by the 
majority class of its K nearest neighbors in N-dimensional feature space. K is an odd 
number, usually one. The inter-item distances in feature space are calculated using 
Euclidian geometry, where: 

where i, j are specific items, II the index for all features, and N the total number of 
features. 

The direct visualization of multidimensional feature space is not possible for N> 3. 
However, there are several mapping techniques which can reduce the feature space 
to two dimensions for display. Of these, we have found the nonlinear mapping method 
[12, 131 to be the most useful. This method transforms N-space data to 2-space data, 
while attempting to retain the relative inter-item distances which exist in N-space. 
This is accomplished by an iterative procedure which successfully reduces the ‘mapping 
error’ until no perceptible changes occur in the 2-dimensional display. The mapping 
error is defined as: 

E = xdij -’ 
[ I[ x(dij-d$)2/dij 1 

where dij is the distance in N-space and d,$ the distance in 2-space. 
Since the mapping is a 2-dimensional display, it allows visual verification of pattern 

vector separation by class in N-space. It also allows identification of the nature of 
classification errors. The nonlinear mapping technique is extremely useful after initial 
selection of a small set of features, as it guides the selection of optimum feature 
subsets. 

Instrumentation 
An IBM/AT clone personal computer (PC) was used for database management 

and computerized pattern recognition. The minimum configuration used included 
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1 MByte RAM and a 40 MByte hard disk, with a 4 mHz 286 microprocessor. For 
some applications (nonlinear mapping) a similar system with a 12 MHz 386 microprocessor 
and 8087 math coprocessor was preferred, because the iterative procedure could be 
quite time-consuming. A typical pattern recognition run required 8 min of 286 time 
for 40 patterns and 6 features. A typical nonlinear mapping run for the same data 
required 210 min of 386 time for 2000 iterations. 

Database management and data analysis 
All data are contained in a SYMPHOW database-management system. Basic 

statistical computations (averages, variances, distributions, maxima, minima, etc.) and 
associated graphical procedures were conducted using packages contained within 
SYMPHONYTM. Multivariate analysis procedures (pattern recognition, correlation 
analysis, and nonlinear mapping) were developed for operation on the PC and 
programmed in compiled BASIC (Microsoft). 

Basic procedures 
Feature definition 
The raw database used for these studies contained all maintenance data (float 

voltages, specific gravities, water additions, and electrolyte levels) collected quarterly 
for all 323 operating cells between August, 1987 and February, 1990. (Subsequent 
maintenance data are also contained in the database, but were not used for this study.) 
Because only 109 of these cells underwent capacity testing in both 1989 and 1990, 
the working database contained only data for these cells. 

Features used for pattern recognition studies can be the individual data items 
(raw data) as well as the transformations or combinations of these data. Thus, in 
addition to the raw data features, the SYMPHONY database can contain many 
additional transformed/combined features. In our study, the numbers of features and 
their relationships to the raw data varied in each different investigation stage. This 
is because one of the primary goals of our investigation was to determine which 
transformations would best capture the performance trend information contained in 
the raw data. 

Indexing 
Data transformations producing pattern recognition features include: data ratios, 

trends, sums, differentials, products, etc. In each case, the indexing method has been 
varied. During our investigation several indexes were considered, of which two are 
presented here: time sequence of maintenance events, and ‘battery-activity’ index. 

Time-sequence index 
This indexing method indicates the sequence of maintenance events during the 

one-year period preceding a capacity test. Here, we define (t - 1) as the time associated 
with the quarterly maintenance event just prior to a given capacity test; those prior 
to (t- 1) are (t-2), (t-3), and (t- 4). 

Battery-activity index 
The total water added during each quarterly maintenance cycle was considered 

as an index closely related to battery electrical activity and stress. Thus, the ‘water- 
added’ index was defined such that the index (T- 1) was assigned to the maintenance 
event with maximum water addition, (T-2) to the event with the second highest 
amount of water addition, . . . , (T- 4) to the event with minimum water addition during 
the year preceding a periodic capacity test. 



Training and prediction sets 
The pattern-recognition technique is usually first carried out on a set of known 

patterns called a training set to develop a classifier that recognizes the class membership 
of these patterns as well as possible; this procedure is called ‘training’. The true 
identity of each pattern is compared with the identity assigned to it in the classification 
step, and the percentage of correctly-classified training-set patterns is called the 
recognition rate, the classification accuracy of the classifier. If the recognition rate is 
poor, then other measurements or alternative data transformations should be tried 
until an acceptably high accuracy is achieved, if possible. 

Once a sufficiently accurate decision rule has been obtained by the training 
procedure, its reliability can be evaluated by observing how successful it is at classifying 
a different set of known patterns, called aprediction set. These patterns have essentially 
the same origins as the training set and represent the same classes included in the 
training set. If patterns of the prediction set are also correctly classified with high 
accuracy, the classification rule can be considered valid and reliable. Truly unknown 
patterns may then be analyzed as long as each is collected in the same manner as 
the training/prediction sets and belongs to one of the classes represented in the training/ 
prediction sets. 

Because our research goal is to use periodic maintenance data for predicting 
subsequent cell performance, the maintenance data collected prior to the. capacity test 
in March, 1989, were defined as the training set; and the data preceding the April, 
1990, capacity test were defined as the prediction set. The specific feature sets found 
useful for classifying cells from the training set data were then used (based on the 
same feature definitions) for prediction. 

For the CEMC capacity tests, only a selected’subset of 109 or 121 of the total 
323 cells in operation were monitored for capacity measurements. Thus, although 
maintenance data were available for all cells, only the 109-cell subset whose capacities 
were obtained for all tests was considered for defining the training set and prediction 
set. 

Defining class boundaries 
In this study, patterns of both training set and prediction set are divided into 

three classes according to their capacity values from a specific capacity test. Cells with 
high capacity are assigned to Class 1, cells with low capacity to Class 2, and intermediates 
to Class 3. In the computer database all cells were rank ordered according to capacity. 
We define ‘high capacity’ cells as those with capacity values > (AVG+ 1 SD), low 
capacity cells as those with capacity values < (AVG- 1 SD), intermediates as cells 
with capacity values within the range (AVG f 1 SD). 

For the training set (maintenance data collected before the March, 1989, capacity 
test) the average value for 109 cell capacities (measured March, 1989) was 9.5.0%, 
and the standard deviation was f3.1%; so Class 1 cells had capacities >98.1%; 
Class 2 cells had capacities <91.9%; Class 3 cells had capacities between 91.9 and 
98.1%. For the prediction set (data collected before the April, 1990, capacity test) 
the average value for 121 cell capacities (measured April, 1990) was lOl.S%, and the 
standard deviation was f 2.8%. Therefore, cells with capacities > 104.3% were assigned 
to Class 1; cells with capacities <98.7% were assigned to Class 2, those with capacities 
in between were assigned to Class 3. Figures l(a) and l(b) illustrate the overall 
distributions of cell capacities in the 1989 and 1990 tests. 

The number of cells contained in each training or prediction set varied for each 
study as discussed below. However, about 65% of the cells belonged to Class 3 
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to 25 “C. (a) Capacity test at CEMC, March, 1989, 109 cells, and (b) capacity test at CEMC, 
April, 1990, 121 cells, including all cells from (a). 
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(intermediate). But only about one-fourth of those cells were included in each study 
in order to keep the sizes of all classes approximately equal. Selected intermediate 
class cells were evenly spread in capacity throughout the mid-range. 

An alternative procedure for assigning cells to a particular class was to use ‘batch 
normalization’. With this approach the relative capacity values of cells within each 
fabrication batch (circuits 1 to 5) were considered for assigning classes. The same 
class boundary criteria were used: i.e., Class 1, capacities > (batch average + 1 SD); 
Class 2, capacities <(batch average - 1 SD); Class 3, capacities within the range 
(batch average & 1 SD). Thus, in this case, the absolute values of cell capacities were 
not compared across batch boundaries. 

Normalization of maintenance data 
The purpose of normalization is to remove the variance in a data set due to 

incidental differences in magnitudes of different features. Various normalization methods 
might be used. For example, conventionally normalized .data can be expressed as: 

where (XNj)i is the normalized data value for the jth feature, ith cell for a specific 
maintenance event, (Xj)i the raw data value, and Xj the average value of jth feature 
over all cells for a specific maintenance event. 

Trend analysis required normalized data. Trends were obtained by computing a 
linear regression fit for each cell to the maintenance data over the one-year period 
preceding each capacity test. Slopes were then used as features for pattern-recognition 
analysis (see Table 1). 

Autoscaling is a more comprehensive normalization procedure which transforms 
raw data in the following way: 

(XSj)i = ((q)i -&)/(SD)j 
where (X5”)i is the autoscaled value for the jth feature, ith cell, for a specific maintenance 
event, (Xj)i, Xj, as defined above for eqn. (4), and (SD)j the standard deviation for 
the jth feature over all cells for a specific maintenance event. 

This autoscaling procedure replaces each data value in a distribution with its 
distance from the mean expressed in units of standard deviation. All autoscaled 
distributions have a mean of zero and a standard deviation of one. (This procedure 
is sometimes referred to as ‘standardization’.) 

Regardless of prior data transformation, including batch normalization, all pattern 
features were autoscaled prior to pattern-recognition analysis. Autoscaling allows direct 
comparison and combination of data sets which were obtained in different time periods. 
For example, in the pattern recognition prediction step, it is necessary to compare 
training-set and prediction-set data. Based on classifiers developed from training, one 
prediction set pattern at a time is classified by nearest neighbor analysis with the 
entire training set. Because the collection conditions might be different for the two 
data sets, it is reasonable to autoscale the training-set and prediction-set data separately 
before combining them for pattern recognition. 

Results and discussion 

The effectiveness of pattern-recognition techniques for battery-performance pre- 
diction from maintenance data is critically dependent on data organization procedures. 
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TABLE.. 1 

Features used for time-sequence index investigations; each item refers to measurements for a 
specific cell 

Feature Definition 

CELVOLT(t-I), . . . , CELVOLT(r-4) Normalized cell float voltage values for 
(t-1) . . . to (t-4), where (t-l) is the 
maintenance event immediately preceding 
the capacity test, and (t-4) is the 4th 
(earliest) event preceding the capacity test 

SPGR(t-l), . . . , SPGR(t-4) Normalized specific gravity values indexed 
as above 

LEVEL&l), . . . , LEVEL@-4) Normalized electrolyte level values indexed 
as above 

WATER@-l), . . . , WATER(M) Normalized water addition values indexed 
as above 

NCLVXIY 
NSGXfY 
NLVLX/Y 
NWATXIY 

AVGVLT 

AVGSPGR 

AVGLVL 

AVGWAT 

[CELVOLT(t-X)-CELVOLT(t-Y)] 
[SPGR(t-X)-SP,GR(t-Y)] 
[LEVEL@-X)-LEVEL&Y)] 
[WATER@-X)-WATER+Y)] 

Average value of cell voltages over all 
maintenance events 

Average value of specific gravities over all 
maintenance events 

Average value of electrolyte levels over all 
maintenance events 

Average value of water-added over all 
maintenance events 

SG*AV 
AVISG 
PWT 

[(AVSPGR) * (AVGVLT)] 
[(AVGVLT)/(AVGSPGR)] 

Product of cell voltages from all 
maintenance events 

RELWAT Ratio of cumulative water-added (1...4) to 
average over all cells 

SLPCLV 
SLPSG 
SLPLVL 
SLPWAT 

“X, Y=l, . . . . 4. 

Slope for cell voltages ((t-l)...(M)) 
Slope for specific gravities ((t-l). . . (t-4)) 
Slope for electrolyte levels ((t-1). . . (t-4)) 
Slope for water-added ((t-1) _ _ _ (r-4)) 

Thus, our investigations focused on the effects of various indexing, scaling, and class 
assignment approaches. 

Investigation by time-sequence index 
In this part of the study, features were organized by the time-sequence index as 

described in the ,&xperimental section. Table 1 lists all the features considered in this 
investigation stage, and defines the indexing nomenclature. All raw data were normalized 
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with respect to the average value of each measurement for each maintenance event 
(see first four features in Table 1). Normalized data values were used to analyze 
‘trends’, i.e., linear regression slopes were calculated and considered as features for 
investigation (see last four features in Table 1). Various other features were defined 
(including differences in normalized values, like NSGXIY; average values of raw data, 
like AVGVLT, and other combinations of features, like SG * AV). 

Two-class training and prediction 
In this study only the high- and low-capacity cells (Classes 1 and 2) were examined 

to identify the existence of useful features and their discriminating abilities. The 
training results showed that several feature combinations are capable of discriminating 
between these two classes of cells with 100% accuracy. When these same features 
were extracted from the prediction set data, several sets of three to five features 
gave about 80% overall classification accuracy. These features were: AVGVLT, 
SPGR(t-2), NCLV3/4, NSG1/3, NLVL2/4, SG * AV, ‘AVGLVL, NLVL3/4, SLPCLV, 
NCLV1/4. 

Three-class training and prediction 
The discriminating ability of this feature set (Table 1) for three classes of cell 

performance (high/low/intermediate) was examined. Three-class training accuracy was 
only 76-88% overall for the four best feature sets; but Class 1 accuracy was consistently 
near 100%. 

In order to understand the difference in two- and three-class training results, 
typical nonlinear mappings of two-class and three-class feature space were examined. 
These are shown in Figs. 2(a) and 2(b). The two-class mapping example of Fig. 2(a) 
illustrates the complete separation of high- and low-capacity cells in this feature space, 
which corresponds to the 100% training accuracy obtained with several feature sets. 
The fuzzy class boundaries seen in Fig. 2(b) however, are consistent with the poorer 
training results typically obtained for the 3-class set. The observed clustering of Class 
1 cells is consistent with the high accuracy of pattern recognition of this class. 

When a three-class prediction set was examined using the best sets of training 
features, meaningful classification was not obtained. Thus, it was concluded that this 
indexing method and the associated feature definitions were inadequate for realistic 
classifications of unknown cells. Nevertheless, the accurate training results obtained 
do confirm that the maintenance features selected do contain information related to 
performance prediction. 

Investigation by battery-activity index 
Results with the previous indexing method demonstrated clearly that it was possible 

to predict battery performance between high- and low-capacity cells, but when inter- 
mediate-capacity cells were included in the training and prediction sets, accurate three- 
class prediction could not be achieved. We believe the problem is that the preceding 
indexing method does not capture perhaps the most important factor dictating short- 
term cell performance, and that is battery usage. Thus, in this stage of investigation, 
features were ordered to correspond to the quantity of water-added quarterly in order 
to provide an index related to battery activity. (See Experimental section). All the 
features considered in this stage are identical to those in Table 1, except that time 
(t) is replaced by the index, T, where (T-l) refers to the maintenance event with 
highest overall water consumption, and (T-4) is the lowest. 
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Fig. 2. Nonlinear mapping of cell maintenance features using time-sequence index (see Table 1). 
Data collected at CEMC prior to March, 1989, capacity test. (0) high-capacity cells (Class l), 
(0) low-capacity cells (Class 2), and (x) intermediate-capacity cells (Class 3). (a) Two-class 
(high/low capacity) classification, features: NLVLlR, AVGVLT, AVGSPGR. (b) Three-class 
(high/low/intermediate capacity) classitication, features: SLPWAT, CELVOLT(f-2), 
CELVOLT(t-I), SG *AV. 
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Two-class training and prediction 
Investigation of two-class training again achieved, 100% overall classification accuracy 

with several different feature sets. Results of two-class prediction, using the same 
feature definitions from successful training, demonstrated that 91 to 94% prediction 
accuracy could be achieved with as few as two or three features (including AVSPGR, 
CELVOLT(T-2), CELVOLT(T-3), NCLW3, NCLV3/4). Based on the 100% recognition 
rates in training and the results of improved and consistent prediction accuracy, we 
conclude that the water-usage index is the best of several methods tried to organize 
features to capture the information related to performance prediction. 

i’bee-class training and prediction 
Results of three-class training using the water-usage index are shown in Table 2, 

where the feature sets providing the four best overall classification accuracies are 
listed. Application of the training-selected features to the 1990 prediction set provided 
the first meaningful three-class prediction results, and these are listed in Table 3. The 
same cells as in the training set were used for prediction, but some of them changed 
their class in 1990. 

Although not highly accurate, (57% overall prediction accuracy), some feature 
sets provided over 90% accuracy in identifying good performing cells (Class 1). Thus, 
these results were very encouraging and suggested that three-class prediction accuracy 
may be improved with further refinements. (See below.) 

Batch normalization of capacity 
The use of relative cell-capacity values and the variance within batches to assign 

classes was investigated. The same criteria for class assignment boundaries were used 
(& 1 SD), except that these were applied separately to each of five different batches 
of cells, where each batch had historically undergone separate fabrication processing 
and were known to have significantly different average capacities [9]. These batches 
are referred to as ‘circuits l-5 (see Introduction). This meant that some cells from 
different batches might be assigned to the same class, despite signiiicantly different 
capacities, because the average capacities for each batch could be signilkantly 
different [9]. 

After re-assigning cell classes based on batch-normalized cell capacities, pattem- 
recognition performance prediction studies were done as before. Two-class training 
resulted in 91 to 94% recognition, while prediction with the same four feature sets 
resulted in only 64 to 80% accuracy. Not only were these results poorer than without 
batch normalization, but larger feature sets were required. This indicates that the 
performance prediction information captured in the maintenance data is more closely 
related to capacity values normalized over all cells produced, regardless of variance 
from batch to batch. When three-class studies were done, results also showed degraded 
accuracy. Thus, for further work, performance classification was done using capacity 
values normalized over all cells. 

Class bounaby adjustments 
An alternative class boundary adjustment considered was based on the observation 

that some cells were consistently misclassified, regardless of the specific set of features 
used. By examining the nonlinear mapping plots of the various feature sets which 
provided the highest overall training accuracy, it was observed that three fairly well- 
defined separate clusters of cells did exist, but that a few cells were consistently located 
within the ‘wrong’ clusters (i.e., misclassified). To develop an alternative classification 
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criterion, it was assumed that, when three-class training accuracy > 80% was achieved 
(based on the f 1 SD class boundaries), the spatial clustering provided avalid specification 
of class boundaries. The cluster-generated class boundaries are illustrated in Figs. 3(a) 
and 3(b), where the KNN misclassified cells are also indicated. 

Training was repeated with new class assignments based on the consensus cluster 
boundaries observed with the six feature sets providing the best training accuracy with 
the * 1 SD class boundaries. The results of this subsequent training exercise, of course, 
provided very accurate recognition of all three classes. More importantly, new feature 
sets were identified which more sharply separated the three clusters. The training 
results and feature sets are listed in Table 4. 

Prediction results with the feature sets listed in Table 4 were then obtained with 
the 1990 capacity data, but the & 1 SD class’boundary criterion was used to define 
prediction set class assignments, as usual. The results are summarized in Table 5. All 
cells in high- and low-capacity classes were used, but the number of intermediate 
capacity cells was reduced to keep the size of each class about equal. From Table 5 
we can see the overall accuracy for three-class prediction improved (obtaining as high 
as 67%). Moreover, the individual classification accuracies for the high- and low- 
capacity cells can be high for different feature sets (93% for Class 1 and 90% for 
Class 2). 

It is important to note that this last training procedure used is based on visually 
observed clusters in the training set, two of which are mostly high- and low-capacity 
cells, respectively. This approach provides an indirect pathway to our goal of accurately 
predicting which cells will fall in the high- or low-capacity classes of the prediction 
set. The fact that the prediction results are good indicates that the clustering (e.g., 
in Fig. 3) is indeed performance-related. 

Observations 
Indexing method 
The results of our investigations suggest that the ‘battery activity’ (water-added) 

index is the best method for maintenance data organization for performance prediction. 
In fact, it might be preferred to use actual battery-activity data for indexing when it 
is available. The water-added index is, at best, an indirect measure of the activity 
history, but it is particularly useful because it may well represent the integrated effects 
of electrical usage/stress over the preceding maintenance event period. 

Because the importance of the ‘water-added’ method was not recognized prior 
to our study, no special emphasis was placed on the consistent and accurate collection 
of those data. Thus, the watering procedures were not always conducted with the 
purpose of capturing accurately the differences of water required from cell to cell. 

Nevertheless, the total water added over all cells during a particular maintenance 
event can be compared validly with the totals for other maintenance events. In the 
future, however, the quality of the water-added data should be improved in order to 
provide more statistical significance to the cell-to-cell variance. 

Data scaling methodr 
The evaluation of data ‘normalization’ methodswas a crucial part of this investigation. 

For example, in order to compute ‘trend’ features, raw maintenance data were normalized 
so that the variance due to changes in absolute data levels from one maintenance 
event to another would be removed from the computed features. Also, normalization 
of capacity data within each fabrication batch of cells was investigated to determine 
if class boundaries should be assigned on a batch-by-batch basis. In the first case, it 
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Flrbitrrru Unitr 

0’) fit-bitrrry Units 

Fig. 3. Nonlinear mapping of cell maintenance features using water-added indexing method. 
Three-class training (see Table 2). Data collected at CEMC prior to April, 1990, capacity test. 
(Cl) high-capacity cells (Class l), (0) low-capacity cells (Class 2), and (x) intermediate-capacity 
cells (Class 3); circled items were misclassified by KNN pattern recognition. (a) S-dimensional 
plot, features: AVGVLT, NCLVl/3, NSGlW, LEVEL(T-2), NLVLlR. (b) 6-dimensional plot, 
features: PVLT, NCLVl/3, NSGlM, NWAT2/4, LEVEL(T-2), NLVLlR. 
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was found that normalization was essential; whereas, for the second case, normalization 
by batch was counter-productive. 

It was observed that both conventional normalization and autoscaling are important 
data-conditioning techniques, and that it is crucial to choose the most appropriate 
technique for a given procedure. For each of the two cases described above, conventional 
normalization was considered the appropriate scaling technique. However, when com- 
puted features were scaled just prior to applying KNN pattern recognition, the autoscaling 
method was considered the most appropriate for both training and prediction. 

When combining training and prediction sets for prediction classification, wn- 
ventional normalization separately (before combination) usually resulted in higher 
accuracy prediction compared with combined autoscaled sets. This suggested that the 
conventional normalization procedure, which preserves the differences in data range, 
retained more information related to performance prediction. The combined data set 
was then autoscaled before prediction. 

Classification accuracy 
The high accuracy of two-class training/prediction studies throughout this inves- 

tigation certainly verifies the existence of information required for performance prediction 
in the routine maintenance data. However, three-class prediction is required for practical 
applications. 

Results obtained for three-class training/prediction in this investigation were 
encouraging, and some observations could lead to practical applications. For example, 
with some feature sets it was possible to identify either Class 1 (high capacity) cells 
or Class 2 (low capacity) cells with high accuracy. Thus, if the purpose of a performance- 
prediction exercise were to preselect a set of high capacity cells for a critical mission, 
then a feature set providing high Class 1 accuracy with few or no ‘false positives’ 
would be very useful. On the other hand, if prior identification is desired of operating 
cells whose capacity is likely to be unacceptably low in the near future, then high 
prediction accuracy for Class 2 (low capacity) cells would be very useful. This latter 
case is ideally suited for the application of pattern recognition to maintenance data, 
and would be useful even if some ‘false positives’ were included with the projected 
low capacity cells. 

Examples of feature sets which appear to be useful for either Class 1 or Class 
2 prediction are seen in Table 5. For example, the fourth feature set in Table 5 
(conventional normalization data) provides 92.9% Class 1 accuracy. The third feature 
set in Table 5 provides 89.5% accuracy for Class 2 prediction. 

Useful features 
Although many different features were found useful in various parts of this study, 

only those features found useful with the water-added indexing method will be discussed 
here. The most useful features included AVGVLT and those which compute changes 
in normalized values of CELVOLT, SPGR, WATER, and LEVEL between specific 
maintenance events. It is not surprising that the voltage changes and the AVGVLT 
features are useful, as it is expected that the cell float voltage would deteriorate with 
decreased capacity. It is also significant that those features which document the cell- 
to-cell variance of changes in (normalized) data levels between maintenance events 
(e.g., NCLV1/3, NSG1/3, etc.) are useful; whereas, those features which document 
the cell-to-cell variance in (normalized/autoscaled) data levels themselves from one 
event to another (e.g., CELVOLT(T-x), SPGR(T-X), . . . etc.) are not very useful. 
This observation suggests that a wide range of levels for each of the maintenance 
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parameters are tolerable within each class of cell performance, whereas significant 
change (or lack of change) in measured levels of maintenance parameters with battery 
usage, may be indicative of projected performance. 

Other available information 
This study focused exclusively on the multivariate examination of maintenance 

data. However, it is important to recognize that other information might also, be 
available to contribute to performance prediction. For example, initial capacity data 
(at fabrication) for individual cells; capacity data obtained during operation, or initial 
fabrication/test data might be available for analysis in addition to the routine maintenance 
data. It would certainly be appropriate to include those additional data for pattern- 
recognition performance prediction. In fact, we are currently conducting a separate 
study of the GNB 500 kWh battery initial fabrication/capacity test data for long-term 
cell performance prediction [14]. 

The significance of the work reported here, of course, is that in many cases, a 
battery system will be installed without detailed documentation of fabrication or initial 
capacity for individual cells, nor will periodic capacity measurements for individual 
cells be practical in most battery energy-storage systems. Thus, performance prediction 
of individual cells, at best, will be dependent on examination of routine maintenance 
data or other readily obtainable periodic observations. 

Conclusions 

This pattern-recogAtion investigation clearly demonstrated that performance pre- 
diction information is present in maintenance data for flooded lead/acid cells. The 
key to extracting information for accurate three-class pattern-recognition analysis is 
to define appropriate methods for indexing data and for minimizing effects of incidental 
factors affecting data variance. In our investigation the ‘battery-activity’ index and 
various data normalization procedures proved to be the effective database treatments. 

Although high overall prediction accuracy was not obtained for the three-class 
problem, selected feature sets do provide high accuracy for identifying either high- 
or low-capacity cells, with no misclassification between these two classes. Thus, the 
results of our investigation suggest that it may be possible to use pattern recognition 
to identify problem cells before failure, and prevent damage to large battery strings. 
It should also be possible to identify subsets of high-capacity cells: and this should 
be useful when attempting to place cells in long strings for selected or matched 
performance. This is potentially as useful as identifying problem cells [15]. 

Based on this study we have learned much about indexing, normalization, and 
feature definitions which will benefit future studies on battery performance prediction. 
It should be pointed out that, although the ‘batch normalization’ did not facilitate 
performance prediction of individual cells, it is a significant concept when cells with 
origins different from training-set items are considered for prediction. Therefore, future 
studies will need to focus on the feasibility of predictive classification of different sets 
of uniformly fabricated cells with ‘batch-normalized features’. The reliability of feature 
definitions should also be examined in future studies to recommend better maintenance 
procedures for battery performance prediction. Finally, the combination of maintenance 
data with other available data will be examined to determine if higher overall performance 
prediction accuracy can be achieved. 

The ultimate extension of this work to individual cell lifetime prediction 
from maintenance data will be done when those data become available for the GNB 
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500 kWh battery. The extension of this work to predictions for newly produced lead/ 
acid batteries is highly desirable. Moreover, we are exploring the extension of the 
general principles of this work to valve-regulated lead/acid batteries, where considerably 
different sets of periodic observations on individual cells will need to be studied. 
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